Abstract

As an ensemble average result, vibrational spectrum simulation can be time-consuming with high accuracy methods. We present a machine learning approach based on the range-corrected deep potential (DPRc) model to improve the computing efficiency. The DPRc method divides the system into "probe region" and "solvent region"; "solvent-solvent" interactions are not counted in the neural network. We applied the approach to two systems: formic acid C═O stretching and MeCN C≡N stretching vibrational frequency shifts in water. All data sets were prepared using the quantum vibration perturbation approach. Effects of different region divisions, one-body correction, cut range, and training data size were tested. The model with a single-molecule "probe region" showed stable accuracy; it ran roughly 10 times faster than regular deep potential and reduced the training time by about four. The approach is efficient, easy to apply, and extendable to calculating various spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.