Abstract
SummaryThe rapid growth of the Internet of Things (IoT) has led to its widespread adoption in various industries, enabling enhanced productivity and efficient services. Integrating IoT systems with existing enterprise application systems has become common practice. However, this integration necessitates reevaluating and reworking current Enterprise Architecture (EA) models and Expert Systems (ES) to accommodate IoT and cloud technologies. Enterprises must adopt a multifaceted view and automate various aspects, including operations, data management, and technology infrastructure. Machine Learning (ML) is a powerful IoT and smart automation tool within EA. Despite its potential, a need for dedicated work focuses on ML applications for IoT services and systems. With IoT being a significant field, analyzing IoT‐generated data and IoT‐based networks is crucial. Many studies have explored how ML can solve specific IoT‐related challenges. These mutually reinforcing technologies allow IoT applications to leverage sensor data for ML model improvement, leading to enhanced IoT operations and practices. Furthermore, ML techniques empower IoT systems with knowledge and enable suspicious activity detection in smart systems and objects. This survey paper conducts a comprehensive study on the role of ML in IoT applications, particularly in the domains of automation and security. It provides an in‐depth analysis of the state‐of‐the‐art ML approaches within the context of IoT, highlighting their contributions, challenges, and potential applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.