Abstract
AbstractMachine Learning (ML), or the ability of self‐learning computer algorithms to autonomously structure and interpret data, is a methodological approach to solve complicated optimization problems based on abundant data. ML is recently gaining momentum as algorithmic applications, computing potency, and available data sets increased manifold over the past two decades, providing an information‐rich environment in which human reasoning can partially be replaced by computer reasoning. In this paper, we want to assess the implications of ML for Design of Experiments (DoE), a statistical methodology widely used in Quality Management for quantifying effects and interactions of factors with influence on the production quality or the process yield. We specifically want to assess the future role and importance of DoE: Will it remain unaltered by ML, will it be made obsolete, or will it be reinforced? With this, we want to contribute to the discussion of the future use of traditional Quality Management methodologies in production, as our ML assessment can in principle be applied to other statistical methodologies as well. While we are convinced that ML will heavily impact the field of Quality Management and its predominant set of statistical methodologies, we find reason to expect that this impact will be a mutual one. As this is the first paper addressing the joint force potential of the two methodologies ML and DoE, we expect a range of follow‐up papers being written on the subject and a spark in specialized applications addressing DoE's ML‐enhanced vital functionality for process improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.