Abstract

Industrial statistics plays a major role in the areas of both quality management and innovation. However, existing methodologies must be integrated with the latest tools from the field of Artificial Intelligence. To this end, a background on the joint application of Design of Experiments (DOE) and Machine Learning (ML) methodologies in industrial settings is presented here, along with a case study from the chemical industry. A DOE study is used to collect data, and two ML models are applied to predict responses which performance show an advantage over the traditional modeling approach. Emphasis is placed on causal investigation and quantification of prediction uncertainty, as these are crucial for an assessment of the goodness and robustness of the models developed. Within the scope of the case study, the models learned can be implemented in a semi-automatic system that can assist practitioners who are inexperienced in data analysis in the process of new product development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.