Abstract

BackgroundEvoked potentials (EPs) are a measure of the conductivity of the central nervous system. They are used to monitor disease progression of multiple sclerosis patients. Previous studies only extracted a few variables from the EPs, which are often further condensed into a single variable: the EP score. We perform a machine learning analysis of motor EP that uses the whole time series, instead of a few variables, to predict disability progression after two years. Obtaining realistic performance estimates of this task has been difficult because of small data set sizes. We recently extracted a dataset of EPs from the Rehabiliation & MS Center in Overpelt, Belgium. Our data set is large enough to obtain, for the first time, a performance estimate on an independent test set containing different patients.MethodsWe extracted a large number of time series features from the motor EPs with the highly comparative time series analysis software package. Mutual information with the target and the Boruta method are used to find features which contain information not included in the features studied in the literature. We use random forests (RF) and logistic regression (LR) classifiers to predict disability progression after two years. Statistical significance of the performance increase when adding extra features is checked.ResultsIncluding extra time series features in motor EPs leads to a statistically significant improvement compared to using only the known features, although the effect is limited in magnitude (ΔAUC = 0.02 for RF and ΔAUC = 0.05 for LR). RF with extra time series features obtains the best performance (AUC = 0.75±0.07 (mean and standard deviation)), which is good considering the limited number of biomarkers in the model. RF (a nonlinear classifier) outperforms LR (a linear classifier).ConclusionsUsing machine learning methods on EPs shows promising predictive performance. Using additional EP time series features beyond those already in use leads to a modest increase in performance. Larger datasets, preferably multi-center, are needed for further research. Given a large enough dataset, these models may be used to support clinicians in their decision making process regarding future treatment.

Highlights

  • Evoked potentials (EPs) are a measure of the conductivity of the central nervous system

  • For visual EP (VEP) the visual system is excited and conductivity is measured in the optic nerve; for motor EP (MEP) the motor cortex is excited and conductivity is measured in the feet or hands; for somatosensory EP (SEP) the somatosensory system is excited and conductivity is measured in the brain; and for brainstem auditory EP (BAEP) the auditory system is excited and conductivity is measured at the auditory cortex

  • The general trend we see is that adding the extra time series features improves the performance on the independent test set, but only marginally

Read more

Summary

Introduction

Evoked potentials (EPs) are a measure of the conductivity of the central nervous system. They are used to monitor disease progression of multiple sclerosis patients. It remains impossible to accurately predict the disease course of an individual patient. EP provide quantitative information on the functional integrity of well-defined pathways of the central nervous system, and reveal early infra-clinical lesions. They are able to detect the reduction in electrical conduction caused by damage (demyelination) along these pathways even when the change is too subtle to be noticed by the person or to translate into clinical symptoms. If several types of EP are available for the same patient this is referred to as a multimodal EP (mmEP)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call