Abstract

To develop a novel machine learning algorithm capable of predicting TKA implant sizes using a large, multicenter database. A consecutive series of primary TKA patients from two independent large academic and three community medical centers between 2012 and 2020 was identified. The primary outcomes were final tibial and femoral implant sizes obtained from an automated inventory system. Five machine learning algorithms were trained using six routinely collected preoperative features (age, sex, height, weight, and body mass index). Algorithms were validated on an independent set of patients and evaluated through accuracy, mean absolute error (MAE), and root mean-squared error (RMSE). A total of 11,777 patients were included. The support vector machine (SVM) algorithm had the best performance for femoral component size(MAE = 0.73, RMSE = 1.06) with accuracies of 42.2%, 88.3%, and 97.6% for predicting exact size, ± one size, and ± two sizes, respectively. The elastic-net penalized linear regression (ENPLR) algorithm had the best performance for tibial component size (MAE 0.70, RMSE = 1.03) with accuracies of 43.8%, 90.0%, and 97.7% for predicting exact size, ± one size, and ± two sizes, respectively. Machine learning algorithms demonstrated good-to-excellent accuracy for predicting within one size of the final tibial and femoral components used for TKA. Patient height and sex were the most important factors for predicting femoral and tibial component size, respectively. External validation of these algorithms is imperative prior to use in clinical settings. Case-control, III.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.