Abstract

BackgroundAccurate sizing is critical for the overall success of a total knee arthroplasty (TKA). This study's primary purpose was to investigate the ability to predict the tibial and femoral component size in a single implant system from patient demographics and anthropometric data. A secondary goal was to compare the predicted tibial and femoral component sizes from our statistical model with a previously validated electronic application used to predict the implant size.MethodsA consecutive series of 484 patients undergoing a primary TKA at a single institution was reviewed. Data on height, weight, body mass index, sex, age, and component size were collected. A proportional odds model was developed to predict tibial and femoral component sizes. The relationship between the proportional odds model predictions was also compared with the component sizes determined by the Arthroplasty Size Predictor electronic application.ResultsWeight, height, and sex predicted the implanted component size with an accuracy of 54.0% (n = 247/484) for the tibia and 51.1% (n = 231/484) for the femur. The accuracy improved to 94.4% (n = 457/484) for the tibia and 93.4% (n = 452/484) for the femur within ±1 component size. Our data are highly correlated to the Arthroplasty Size Predictor for the predicted tibial component size (ρ = 0.91, P < .001) and femoral component size (ρ = 0.89, P < .001).ConclusionsOur novel templating model may improve operative efficiency for a single TKA system. Our findings have a high concordance with a widely available electronic application used to predict implant sizes for a variety of TKA systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call