Abstract
It becomes essential to monitor the Activity of Daily Living(ADL) of elderly people living alone by keeping track of their day to day activities & helping those having strong health issues. In this paper various machine learning algorithms for human activity recognition is analyzed. Along with this, an extensive study is carried out to learn about the current technologies used in activity recognition. Activity recognition is generally done in the form of signals generated through sensors. The signals are then preprocessed, segmented, features are extracted and activity is recognized. The main objective of Human Activity Recognition System is to explore the limitations of self-dependent old age persons and suggest ways of overcoming it. By using the different wearable and non-wearable sensors, one can easily monitor the human activity and evaluate the data generated through it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovative Technology and Exploring Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.