Abstract

SummaryThe oxygen evolution reaction (OER) is a critical reaction for energy-related applications, yet suffers from its slow kinetics and large overpotential. It is desirable to develop effective OER electrocatalysts, such as single-atom catalysts (SACs). Here, we demonstrate machine learning (ML)-accelerated prediction of OER overpotential of all transition metals. Based on density functional theory (DFT) calculations of 15 species of SACs, we design a topological information-based ML model to map the OER overpotentials with atomic properties of the corresponding SACs. The trained ML model not only yields remarkable prediction precision (relative error of 6.49%) but also enables a 130,000-fold reduction of prediction time in comparison with pure DFT calculation. Furthermore, an intrinsic descriptor that correlates the overpotential of an SAC with its atomic properties is revealed. The approach and results from this study can be readily applicable to screen other SACs and significantly accelerate the design of high-performance catalysts for many other reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.