Abstract
Gastric cancer remains an enormous threat to human health. It is extremely significant to make a clear diagnosis and timely treatment of gastrointestinal tumors. The traditional diagnosis method (endoscope, surgery, and pathological tissue extraction) of gastric cancer is usually invasive, expensive, and time-consuming. The machine learning method is fast and low-cost, which breaks through the limitations of the traditional methods as we can apply the machine learning method to diagnose gastric cancer. This work aims to construct a cheap, non-invasive, rapid, and high-precision gastric cancer diagnostic model using personal behavioral lifestyles and non-invasive characteristics. A retrospective study was implemented on 3,630 participants. The developed models (extreme gradient boosting, decision tree, random forest, and logistic regression) were evaluated by cross-validation and the generalization ability in our test set. We found that the model developed using fingerprints based on the extreme gradient boosting (XGBoost) algorithm produced better results compared with the other models. The overall accuracy of which test set was 85.7%, AUC was 89.6%, sensitivity 78.7%, specificity 76.9%, and positive predictive values 73.8%, verifying that the proposed model has significant medical value and good application prospects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.