Abstract

BackgroundGastric cancer is one of the leading causes of death worldwide. Screening for gastric cancer greatly relies on endoscopy and pathology biopsy, which are invasive and pose financial burdens. Thus, the prevention of the disease by modifying lifestyle-related behaviors and dietary habits or even the prevention of risk factor formation is of great importance. This study aimed to construct an inexpensive, non-invasive, fast, and high-precision diagnostic model using six machine learning (ML) algorithms to classify patients at high or low risk of developing gastric cancer by analyzing individual lifestyle factors.MethodsThis retrospective study used the data of 2029 individuals from the gastric cancer database of Ayatollah Taleghani Hospital in Abadan City, Iran. The data were randomly separated into training and test sets (ratio 0.7:0.3). Six ML methods, including multilayer perceptron (MLP), support vector machine (SVM) (linear kernel), SVM (RBF kernel), k-nearest neighbors (KNN) (K = 1, 3, 7, 9), random forest (RF), and eXtreme Gradient Boosting (XGBoost), were trained to construct prognostic models before and after performing the relief feature selection method. Finally, to evaluate the models’ performance, the metrics derived from the confusion matrix were calculated via a test split and cross-validation.ResultsThis study found 11 important influence factors for the risk of gastric cancer, such as Helicobacter pylori infection, high salt intake, and chronic atrophic gastritis, among other factors. Comparisons indicated that the XGBoost had the best performance for the risk prediction of gastric cancer.ConclusionsThe results suggest that based on simple baseline patient data, the ML techniques have the potential to start the prescreening of gastric cancer and identify high-risk individuals who should proceed with invasive examinations. Our model could also considerably lessen the number of cases that need endoscopic surveillance. Future studies are required to validate the efficacy of the models in a larger and multicenter population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.