Abstract

We present a model-independent, data-driven approach to quantify dynamical changes in nonlinear, possibly chaotic, processes with application to machine failure forewarning. From time-windowed data sets, we use time-delay phase-space reconstruction to obtain a discrete form of the invariant distribution function on the attractor. Condition change in the system's dynamic is quantified by dissimilarity measures of the difference between the test case and baseline distribution functions. We analyze time-serial mechanical (vibration) power data from several large motor-driven systems with accelerated failures and seeded faults. The phase-space dissimilarity measures show a higher consistency and discriminating power than traditional statistical and nonlinear measures, which warrants their use for timely forewarning of equipment failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.