Abstract

The authors present a model-independent approach to quantify changes in the dynamics underlying nonlinear time-serial data. From time-windowed datasets, the authors construct discrete distribution functions on the phase space. Condition change between base case and test case distribution functions is assessed by dissimilarity measures via L1 distance and chi2 statistic. The discriminating power of these measures is first tested on noiseless data from the Lorenz and Bondarenko models, and is then applied to detecting dynamic change in multichannel clinical scalp EEG data. The authors compare the dissimilarity measures with the traditional nonlinear measures used in the analysis of chaotic systems. They also assess the potential usefulness of the new measures for robust, accurate, and timely forewarning of epileptic events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.