Abstract
AbstractMultiwall carbon nanotube buttressed aluminium 7075 metal matrix composite was synthesized through an amended liquid metallurgy method, which consisted semisolid stirring, ultrasonic treatment and squeeze casting. Aim was to investigate its machinability and surface morphology during electrical discharge machining. Variable machining factors were peak current, pulse‐on time and gap voltage, whereas the responses under investigation were electrode wear rate, material removal rate and average surface roughness. Results revealed electrode wear rate, material wear rate and average surface roughness increased on increasing peak current and pulse‐on time, but all these responses behaved inversely with the increase of gap voltage. Average surface roughness reduced by around 44 % on reducing the peak current from 10 A to 4 A and increasing gap voltage from 55 V to 80 V at constant pulse‐on time of 300 μs; however, it increased by around 25 % on reducing the gap voltage from 80 V to 55 V and increasing the pulse‐on time from 100 μs to 300 μs at constant peak current of 10 A. Significance of the process parameters were verified, regression models were developed and morphology of the machined surfaces was studied. Finally, multiple response optimization was conducted following grey relational approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.