Abstract
An experimental study aimed at evaluating the influence of Mach number on the base pressure fluctuations of a cylindrical afterbody was performed over a wide range of Mach numbers from subsonic to supersonic speeds. Time-averaged results indicate that the coefficient of base pressure drops with the increase in the freestream Mach number at subsonic speeds and increases at supersonic Mach numbers. The coefficient of root-mean-square of the pressure fluctuations follows a decreasing trend with the increase in the Mach number. Examination of the spectra reveals different mechanisms dominate the pressure fluctuations from the center to the periphery of the base as well as with the change in the Mach number. Analysis of the azimuthal coherence indicates that all the dominant tones in the spectra can be classified either into a symmetric or an antisymmetric mode at subsonic Mach numbers. However, at supersonic Mach numbers, all the dominant tones in the spectra are symmetric in nature. The results from the cross-correlation suggest that two possible mechanisms of recirculation bubble pulsing and convective motions/vortex shedding are driving the dynamics on the base at subsonic Mach numbers. However, at supersonic Mach numbers, only single mechanism of the recirculation bubble pulsing dominates. Moreover, it indicates that the symmetric mode is associated with the dynamics of the recirculation bubble and the antisymmetric mode is related to the convective motions/vortex shedding.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have