Abstract
반도성 <TEX>$MnSi_{1.73}$</TEX> 화합물은 고온 특성이 우수하고 뛰어난 내산화성을 가진 열전재료로서 알려져 있다. 본 연구에서는 순 Mn 및 Si 분말재료를 출발 원료로 기계적 합금화법(MA)을 적용하여 <TEX>$MnSi_{1.73}$</TEX> 화합물 합성을 실시하였다. MA 처리는 P-5 유성형 볼밀장치를 이용하여 Ar 중에서 행하였다. MA 분말재료의 X선 회절, 열분석 및 전자현미경 분석을 통하여 고상반응을 관찰하였다. MA 공정 중 Si의 손실을 고려하여 화학양론 조성에서 Si 양을 증가시켜 <TEX>$MnSi_{1.73}$</TEX> 화합물 합성을 시도하였다. 그 결과 <TEX>$MnSi_{1.73}$</TEX> 화합물 단상은 <TEX>$MnSi_{1.88}$</TEX> 조성의 혼합 분말을 200시간 볼밀 처리함으로써 얻을 수 있었다. 또한 200시간 볼밀 처리에 의하여 제조된 <TEX>$MnSi_{1.73}$</TEX> 화합물의 평균결정립 크기는 40 nm 임을 X 선 회절피크의 Hall plot으로 부터 알 수 있었다. The semiconducting <TEX>$MnSi_{1.73}$</TEX> compound has been recognized as a thermoelectric material with excellent oxidation resistance and stable characteristics at elevated temperature. In the present work, we applied mechanical alloying (MA) technique to produce <TEX>$MnSi_{1.73}$</TEX> compound using a mixture of elemental manganese and silicon powders. The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-<TEX>$K{\alpha}$</TEX> radiation, thermal analysis and scanning electron microscopy. Due to the observed larger loss of Si relative to Mn during mechanical alloying of <TEX>$MnSi_{1.73}$</TEX>, the starting composition of a mixture Mn-Si was modified to <TEX>$MnSi_{1.83}$</TEX> and then <TEX>$MnSi_{1.88}$</TEX>. The single <TEX>$MnSi_{1.73}$</TEX> phase has been obtained by mechanical alloying of <TEX>$MnSi_{1.88}$</TEX> mixture powders for 200 hours. It is also found that the grain size of <TEX>$MnSi_{1.73}$</TEX> compound powders analyzed by Hall plot method is reduced to 40 nm after 200 hours of milling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Crystal Growth and Crystal Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.