Abstract

This study examined the amorphization feasibility of Zr70−x−y Ti x Al y Ni10Cu20 alloy powders by the mechanical alloying (MA) technique. According to the results, after 5 to 7 hours of milling, the mechanically alloyed powders were amorphous basically in the ranges of 0 to 12.5 at. pct Ti and 2.5 to 17.5 at. pct Al. These ranges are larger than those of bulk amorphous alloys prepared by a squeeze mold casting technique. Most of the amorphous mechanically alloyed powders exhibited a wide supercooled liquid region of more than 60 K before crystallization. The glass-transition and crystallization temperatures of mechanically alloyed samples were different from those prepared by squeeze casting. It is suspected that different thermal properties arise from the introduction of impurities during the MA process. The amorphization behavior of Zr50Ti7.5Al12.5Ni10Cu20 was examined in detail. The X-ray diffraction and extended X-ray absorption fine structure (EXAFS) results show the fully amorphous powders formed after 5 hours of milling. A kinetically modified thermodynamic phase transformation process was observed for the glass-transition behavior in the Zr50Ti7.5Al12.5Ni10Cu20 amorphous powder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call