Abstract

Radioresistance is the main reason for nasopharyngeal carcinoma (NPC) recurrence leading to treatment failure, and inducing ferroptosis has gradually been a new way to enhance radiosensitivity. N6-methyladenosine (m6A) is involved in regulation of numerous biological processes. However, whether m6A affects ferroptosis in NPC is still unclear. In this study, we conducted a siRNA library screening to identify m6A reader YTHDC1 as an essential oncogene that suppressed ferroptosis and radiosensitivity by promoting SREBF1 mRNA nuclear export in nasopharyngeal carcinoma. The expression and function of YTHDC1 were assessed via CCK8 cell viability assay, immunostaining, real-time PCR, western blot, radiation clonogenic assay and fluorescence in situ hybridization assay. Ferroptosis was determined by detecting cell viability, lipid peroxidation, abnormal mitochondrial and cell death rate. The in vivo effects of YTHDC1 were examined with RSL3 treatment or lentivirus modification of YTHDC1 expression in radiated mouse models. Based on RSL3-induced ferroptotic cell death model and a siRNA library about m6A modification associated gene screening, we identified m6A reader YTHDC1 could inhibit ferroptosis as well as radiosensitivity of NPC, both in vivo and in vitro. Mechanistically, YTHDC1 protein could recognize m6A sites in the CDS region and 3' untranslated region (3'UTR) of SREBF1 mRNA and promote SREBF1 mRNA nuclear export, which finally resulted in transcriptional upregulation of genes key to ferroptosis such as SCD and FASN. Furthermore, the high expression of YTHDC1 was negatively regulated by ZNF598 via ubiquitination and associated with unfavorable survival in NPC patients due to radioresistance. Our findings reveal the critical role of YTHDC1 specifically in inhibiting ferroptosis and radiosensitivity via m6A-dependent mechanism and provide an exploitable target and therapeutic strategy for overcoming radioresistance in NPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.