Abstract
BackgroundOvarian cancer poses a serious threat to women's health. Due to the difficulty of early detection, most patients are diagnosed with advanced-stage disease or peritoneal metastasis. We found that LncRNA MEG3 is a novel tumor suppressor, but its role in tumor occurrence and development is still unclear.MethodsWe investigated the expression level of MEG3 in pan-cancer through bioinformatics analysis, especially in gynecological tumors. Function assays were used to detect the effect of MEG3 on the malignant phenotype of ovarian cancer. RIP, RNA pull-down, MeRIP-qPCR, actinomycin D test were carried out to explore the m6A methylation-mediated regulation on MEG3. Luciferase reporter gene assay, PCR and Western blot were implemented to reveal the potential mechanism of MEG3. We further confirmed the influence of MEG3 on tumor growth in vivo by orthotopic xenograft models and IHC assay.ResultsIn this study, we discovered that MEG3 was downregulated in various cancers, with the most apparent downregulation in ovarian cancer. MEG3 inhibited the proliferation, migration, and invasion of ovarian cancer cells. Overexpression of MEG3 suppressed the degradation of VASH1 by negatively regulating miR-885-5p, inhibiting the ovarian cancer malignant phenotype. Furthermore, we demonstrated that MEG3 was regulated at the posttranscriptional level. YTHDF2 facilitated MEG3 decay by recognizing METTL3‑mediated m6A modification. Compared with those injected with vector control cells, mice injected with MEG3 knockdown cells showed larger tumor volumes and faster growth rates.ConclusionWe demonstrated that MEG3 is influenced by METTL3/YTHDF2 methylation and restrains ovarian cancer proliferation and metastasis by binding miR-885-5p to increase VASH1 expression. MEG3 is expected to become a therapeutic target for ovarian cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.