Abstract

Macrophages play a pivotal role in the healing of diabetic ulcers. The sustained elevation of glucose levels damages the insulin signaling pathway in macrophages, leading to dysfunctional macrophages that struggle to transition from pro-inflammatory (M1) to reparative (M2) states. Therefore, modulating macrophage inflammatory responses via the insulin pathway holds promise for diabetic ulcer treatment. Additionally, the presence of biofilm impedes drug penetration, and the resulting immunosuppressive microenvironment exacerbates the persistent infiltration of pro-inflammatory M1 macrophages. Therefore, we designed an array of dissolvable microneedle (denoted as NPF@MN) loaded with self-assembled nanoparticles that could deliver NPF nanoparticles, acid-sensitive NPF-releasing Protocatechualdehyde (PA) with hypoglycemic and insulin-like effects, regulating macrophage polarization to an anti-inflammatory M2 phenotype. Additionally, this study extensively examined the mechanism by which NPF@MN accelerates the healing of diabetic ulcers through the activation of the insulin signaling pathway. Through RNA-seq and GSEA analysis, we identified a reduction in the expression of pathway-related factors such as IR, IRS-1, IRS-2, and SHC. Our work presents an innovative therapeutic approach targeting the insulin pathway in diabetic ulcers and underscores its translational potential for clinical management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.