Abstract

Color sensor systems that exploit the advantages of M-13 bacteriophage have been shown to be potentially useful for detection of hazardous materials. The properties of M-13 bacteriophage can be systemically modified to impart target-specific selectivity and sensitivity using the phage display technique. Here, we describe a structural color-based sensor that utilizes genetically engineered M-13 bacteriophage to discriminate different types of antibiotics. An M-13 bacteriophage based structural color matrix was fabricated using a simple pulling technique by self-assembly of M-13 bacteriophage. When exposed to organic solvent, M-13 bacteriophage bundles promptly swell and promote distinct structural color change. Color sensors composed of M-13 bacteriophage genetically engineered to possess WHW peptide motifs clearly discriminated three different types of antibiotics, which was based on the color analysis of sensor using principal component analysis. Our sensing approach based on M-13 bacteriophage could be a promising sensor technique such as an environmental monitoring system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.