Abstract
Lysosomes in mammalian cells are recognized as key digestive organelles, containing a variety of hydrolytic enzymes that enable the processing of both endogenous and exogenous substrates. These organelles digest various macromolecules and recycle them through the autophagy–lysosomal system. Recent research has expanded our understanding of lysosomes, identifying them not only as centers of degradation but also as crucial regulators of nutrient sensing, immunity, secretion, and other vital cellular functions. The lysosomal pathway plays a significant role in vascular regulation and is implicated in diseases such as atherosclerosis. During atherosclerotic plaque formation, macrophages initially engulf large quantities of lipoproteins, triggering pathogenic responses that include lysosomal dysfunction, foam cell formation, and subsequent atherosclerosis development. Lysosomal dysfunction, along with the inefficient degradation of apoptotic cells and the accumulation of modified low-density lipoproteins, negatively impacts atherosclerotic lesion progression. Recent studies have highlighted that lysosomal dysfunction contributes critically to atherosclerosis in a cell- and stage-specific manner. In this review, we discuss the mechanisms of lysosomal biogenesis and its regulatory role in atherosclerotic lesions. Based on these lysosomal functions, we propose that targeting lysosomes could offer a novel therapeutic approach for atherosclerosis, shedding light on the connection between lysosomal dysfunction and disease progression while offering new insights into potential anti-atherosclerotic strategies.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have