7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1074/jbc.271.26.15831
Copy DOIJournal: Journal of Biological Chemistry | Publication Date: Jun 1, 1996 |
Citations: 257 | License type: cc-by |
Palmitoyl-protein thioesterase is a newly described long chain fatty-acid hydrolase that removes fatty acyl groups from modified cysteines in proteins. We have recently identified palmitoyl-protein thioesterase as the defective enzyme in the recessive hereditary neurological degenerative disorder infantile neuronal ceroid lipofuscinosis (Vesa, J., Hellsten, E., Verkruyse, L. A., Camp, L. A. , Rapola, J., Santavuori, P., Hofmann, S. L., and Peltonen, L. (1995) Nature 376, 584-587). A defect in a lysosomal enzyme had been postulated for the disease, but until recently, the relevant defective lysosomal enzyme had not been identified. In this paper, we present evidence for the lysosomal localization of palmitoyl-protein thioesterase. We show that COS cells take up exogenously supplied palmitoyl-protein thioesterase intracellularly and that the cellular uptake is blocked by mannose 6-phosphate, a hallmark of lysosomal enzyme trafficking. The enzyme contains endoglycosidase H-sensitive oligosaccharides that contain phosphate groups. Furthermore, palmitoyl-protein thioesterase cosediments with lysosomal enzyme markers by Percoll density gradient centrifugation. Interestingly, the pH optimum for the enzyme is in the neutral range, a property shared by two other lysosomal enzymes that remove post-translational protein modifications. These findings suggest that palmitoyl-protein thioesterase is a lysosomal enzyme and that infantile neuronal ceroid lipofuscinosis is properly classified as a lysosomal storage disorder.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.