Abstract

Mammalian neocortex formation follows a stereotypical pattern wherein the self-renew and differentiation of neural stem cells are coordinated with diverse organelle dynamics. However, the role of lysosomes in brain development has long been overlooked. Here, we demonstrate the highly dynamic lysosomal quantities, types, and localizations in developing brain. We observed asymmetric endolysosome inheritance during radial glial cell (RGC) division and the increased autolysosomes within intermediate progenitor cells (IPs) and newborn neurons. Disruption of lysosomal function shortens the S phase of the cell cycle and promotes RGC differentiation. Mechanistically, we revealed a post-transcriptional regulation governing ribosome homeostasis and cell-cycle progression through differential lysosomal activity modulation. In the human forebrain organoid, lysosomal dynamics are conserved; specifically, during the mitosis of outer subventricular zone RGCs (oRGs), lysosomes are inherited by the progeny without basal process. Together, our results identify the critical role of lysosomal dynamics in regulating mouse and human brain development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.