Abstract
The Kennedy pathway is a highly conserved de novo glycerolipid biosynthesis pathway in prokaryotes and eukaryotes. In Arabidopsis, LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 (LPAT2) was assumed to catalyze a crucial reaction step of the endoplasmic reticulum (ER)-localized Kennedy pathway because of lethality in the lpat2-1 knockout mutant. However, whether this lethal phenotype was due to the essential role of the Kennedy pathway or LPAT2 as the key enzyme of the Kennedy pathway was unclear. By creating non-lethal LPAT2-knockdown mutants in Arabidopsis, we found that LPAT2 is required for phospholipid content and plant development in vegetative and reproductive growth. Functional in vivo reporter assays revealed that LPAT2 was ubiquitously expressed and localized to the ER, where de novo phospholipid biosynthesis takes place. Intriguingly, our lipid analysis revealed that LPAT2 suppression had different effects among the organs examined: phospholipid levels were decreased both in leaves and flowers and the effect was more pronounced in flowers, a non-photosynthetic organ enriched with phospholipids. Although seed size was reduced in the LPAT2 suppression lines, no remarkable effect was observed in the lipid content of mature siliques. Our results show that LPAT2 is involved in the ER-localized Kennedy pathway, and suggest that its contribution to de novo phospholipid biosynthesis may have organ selectivity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have