Abstract

After 480 days of age, high-producing hens are likely to be subject to ovarian aging, mainly due to oxidative stress. In this study, the amelioration of ovarian aging in chickens, using a plant antioxidant, lycopene, was investigated. The activity of the Nrf2/HO-1 pathway in chicken ovaries at different ages (90, 150, 280 and 580 days old) were compared to elucidate any age-related changes. Subsequently, the putative attenuating effect of lycopene (100 ng/mL) on ovarian aging was evaluated through the establishment of a D-gal-induced aging ovarian culture model. The cultured ovarian tissues of young (280 days) and old (580 days) hens were treated with lycopene for 72 h to verify protective effects of lycopene on naturally aged ovaries. Results showed that the Nrf2/HO-1 pathway was down-regulated during the ovarian aging process. Lycopene rescued the decreased antioxidant capacity by increasing the activities of antioxidases and activating the Nrf2/HO-1 pathway in both D-gal-induced and naturally aged ovaries. Moreover, lycopene promoted cell proliferation and inhibited apoptosis in both D-gal-induced and naturally aged ovaries. Lycopene also alleviated D-gal-induced mitochondrial damage in the living granulosa cells. In conclusion, lycopene can effectively ameliorate the oxidative stress in aging hen ovaries via the activation of the Nrf2/HO-1 pathway.

Highlights

  • Overt signs of aging occur in the ovaries both earlier and more rapidly than in any other organ

  • Western blot analysis confirmed that the expression of Nuclear factor erythroid 2-related factor 2 (Nrf2), phosphorylated Nrf2 and HO-1 proteins were all downregulated significantly at D580 compared with their expression in D150 and D280 hens

  • There were no consistent changes of any significance in either the expression of Keap1 or the expression of NADPH: quinone oxidoreductase 1 (NQO1) in D580 hen ovaries as compared with ovaries from younger ovaries (Fig. 1B)

Read more

Summary

Introduction

Overt signs of aging occur in the ovaries both earlier and more rapidly than in any other organ. Female fecundity is negatively correlated with increasing chronological age [1]. Ovarian aging is characterized by an age-related gradual decrease in both the quantity and the quality of oocytes. Poor oocyte quality is the major age-related contributing factor responsible for the decline in female fertility [2,3]. The decline in oocyte quality is known to be a major cause of aneuploidy, miscarriages and birth defects [4,5]. Decline in egg production occurs with advancing age which causes a great loss of income to the poultry industry [6]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.