Abstract
Globally, colorectal cancer (CRC) is the malignant tumor with the highest mortality rate after lung cancer. Abnormal DNA methylation drives dysregulated gene expression, thereby promoting CRC progression and leading to poor prognosis. We identified a 3-CpG methylation signature that is independently associated with CRC prognosis. The model consists of three methylation-driven genes: FAM3 Metabolism Regulating Signaling Molecule D (FAM3D), DAPP1, and PIGR. However, the prognostic significance, biological function, and related mechanisms of the individual methylation-driven gene FAM3D in CRC have not been studied. Here, we discovered that FAM3D expression was reduced in CRC tissues and cells, and that high methylation and low expression of FAM3D were independent prognostic risk factors for CRC. In addition, FAM3D promoted the growth and movement of CRC cells in vitro and the proliferation in nude mice, mainly by inhibiting ATF4 transcription and downregulating SESN2 expression, and ultimately activating mTORC1. Furthermore, FAM3D resulted in reduced sensitivity of CRC cells to oxaliplatin, cisplatin, and 5-fluorouracil. Our study showed that FAM3D activates the mTORC1 pathway through the ATF4-SESN2 axis and promotes the malignant progression of CRC, which contributes to predict CRC prognosis and guide individualized treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.