Abstract
A general theorem on equilibrium stability in a critical case is applied to switched strong nonlinear differential equations with time delay on state, characterising electrohydraulic servomechanisms dynamics. Basically, its proof involves the use of the Lyapunov-Malkin approach to stability and multiple complete Lyapunov-Krasovskii functionals. The fulfilment of the equilibrium stability condition of the nonlinear system returns to the asymptotic stability condition of the linearised equations and to the so-called Lyapunov conditions for the latter. The transformation of the nonlinear system into the canonical form specific to the Lyapunov-Malkin theorem, and the verification of the two conditions mentioned above require analytical developments doubled by numerical simulations, since the mathematical models are too complex to be approached only analytically. As a consequence, an important result is obtained, for the first time, regarding the thresholds of admissible delay in preserving the stability of a real world object, vital for the safety of the aircraft.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have