Abstract
The majority of research on quadratic stochastic operators (QSOs) was done on a finite-dimensional set of all probability distributions (also known as a simplex), thus it is intriguing to extend them for an infinite case. In particular, the infinite dimensional Volterra operators are discussed in the current paper. Due to the fact non-compactness of infinite dimensional simplex (unlike a finite case) makes the general study challenging, therefore, a sub-class of infinite dimensional Volterra operators is introduced. Furthermore, we construct Lyapunov functions which allow us to explore the dynamics of the introduced operators. Several examples are given with a full description of the limiting set.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have