Abstract

We show that one-dimensional maps f with strictly positive Lyapunov exponents almost everywhere admit an absolutely continuous invariant measure. If f is topologically transitive, some power of f is mixing and, in particular, the correlation of Holder continuous observables decays to zero. The main objective of this paper is to show that the rate of decay of correlations is determined, in some situations, by the average rate at which typical points start to exhibit exponential growth of the derivative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.