Abstract

Feedback control of piecewise smooth discrete-time systems that undergo border collision bifurcations is considered. These bifurcations occur when a fixed point or a periodic orbit of a piecewise smooth system crosses or collides with the border between two regions of smooth operation as a system parameter is quasistatically varied. The class of systems studied is piecewise smooth maps that depend on a parameter, where the system dimension n can take any value. The goal of the control effort in this work is to replace the bifurcation so that in the closed-loop system, the steady state remains locally attracting and locally unique (“nonbifurcation with persistent stability”). To achieve this, Lyapunov and linear matrix inequality (LMI) techniques are used to derive a sufficient condition for nonbifurcation with persistent stability. The derived condition is stated in terms of LMIs. This condition is then used as a basis for the design of feedback controls to eliminate border collision bifurcations in piecewise smooth maps and to produce the desirable behavior noted earlier. Numerical examples that demonstrate the effectiveness of the proposed control techniques are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.