Abstract

Introduction:LY3045697 is a potent and selective aldosterone synthase (CYP11B2) inhibitor that was developed as a safer alternative to mineralocorticoid receptor antagonists. Effects of LY3045697 on aldosterone and cortisol synthesis, as well as potassium ion homeostasis, were evaluated in two clinical studies in healthy subjects.Materials and methods:Two incomplete, placebo-controlled crossover-design clinical studies examined safety, pharmacodynamics, and pharmacokinetics under single and repeated dose conditions in healthy subjects. Pharmacodynamics was assessed following oral potassium challenge and intravenous adrenocorticotropic hormone procedures with spironolactone 25 mg/d as an active comparator.Results:A total of 51 subjects participated in the two studies, which included 38 males and 13 females (of non-childbearing potential), from 18–65 years old. LY3045697 caused rapid dose and concentration-dependent unstimulated plasma aldosterone concentration reduction seen as early as 4 h after the first dose at dose levels as low as 1 mg, and reaching near complete suppression at high doses. The potency (IC50) decreased significantly upon multiple dosing. After eight days of dosing, post-adrenocorticotropic hormone challenge plasma aldosterone concentration increase was dose-dependently blunted by LY3045697 with high potency with a dose as low as 0.1 mg resulting in substantial effect, and with an overall IC50 of 0.38 ng/ml. Minor reductions in cortisol were observed only at the top dose of 300 mg. LY3045697 is generally safe and tolerated, and exhibits linear pharmacokinetics.Conclusions:LY3045697 is a potent and highly selective aldosterone synthase inhibitor with selectivity for CYP11B2, offering a substantial potential advantage over previous aldosterone synthase inhibitors evaluated in the clinic.

Highlights

  • LY3045697 is a potent and selective aldosterone synthase (CYP11B2) inhibitor that was developed as a safer alternative to mineralocorticoid receptor antagonists

  • Eighteen subjects participated in three dosing periods and nine subjects participated in two dosing periods

  • Aldosterone synthesis inhibition is a promising new mode of mineralocorticoid receptor (MR) antagonism. It offers the potential for added efficacy through reduction of non-MR related aldosterone effects, and can circumvent anti-androgenic selectivity issues associated with current MR antagonists

Read more

Summary

Introduction

LY3045697 is a potent and selective aldosterone synthase (CYP11B2) inhibitor that was developed as a safer alternative to mineralocorticoid receptor antagonists. Effects of LY3045697 on aldosterone and cortisol synthesis, as well as potassium ion homeostasis, were evaluated in two clinical studies in healthy subjects. Materials and methods: Two incomplete, placebo-controlled crossover-design clinical studies examined safety, pharmacodynamics, and pharmacokinetics under single and repeated dose conditions in healthy subjects. After eight days of dosing, post-adrenocorticotropic hormone challenge plasma aldosterone concentration increase was dose-dependently blunted by LY3045697 with high potency with a dose as low as 0.1 mg resulting in substantial effect, and with an overall IC50 of 0.38 ng/ml. Conclusions: LY3045697 is a potent and highly selective aldosterone synthase inhibitor with selectivity for CYP11B2, offering a substantial potential advantage over previous aldosterone synthase inhibitors evaluated in the clinic.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.