Abstract

Sandflies are vectors of several pathogens, constituting serious health problems. Lutzomyia longipalpis (Lutz & Neiva, 1912) is the main vector of Leishmania chagasi, agent of visceral leishmaniasis. They synthesize a thick bag-like structure that surrounds the bloodmeal, named peritrophic matrix (PM). One of the major roles of PM in blood-fed insects includes protection against ingested pathogens by providing a defensive barrier to their development. We used traditional and modern morphological methods as well as biochemical and immunolabeling tools to define details of the PM structure of the Lu. longipalpis sandfly, including composition, synthesis, and degradation. The kinetics of PM formation and degradation was found to be related to the ingestion and time of digestion of the bloodmeal. The midgut changes its size and morphology after the blood ingestion and during the course of digestion. A striking morphological modification takes place in the midgut epithelium after the stretching caused by the bloodmeal, revealing a population of cells that was not observed in the unfed midgut. The transmission and scanning electron microscopies were used to reveal several morphological aspects of PM formation. The PM looks thicker and well formed 24 h after the bloodmeal. Presence of chitin in the PM was demonstrated by immunolabeling with an alpha-chitin monoclonal antibody. SDS-polyacrylamide gel electrophoresis showed at least five protein bands with molecular masses of 38.7-135 kDa, induced by the protein-free diet. Mouse polyclonal antiserum was produced against PMs induced by protein-free meal and used in Western blotting, which revealed at least three associated proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call