Abstract

BackgroundHigh-resolution computed tomography (HRCT) is the gold standard for the evaluation of cystic fibrosis (CF) lung disease; however, lung ultrasound (LUS) is being increasingly used for the assessment of lung in these patients due to its lower cost, availability, and lack of irradiation. We aimed to determine the diagnostic performance of LUS for the evaluation of CF pulmonary exacerbation.MethodsThis cross-sectional study included patients with CF pulmonary exacerbation admitted to Masih Daneshvari Hospital, Tehran, Iran, from March 21, 2020 to March 20, 2021. Age, gender, and body mass index (BMI) of the patients were recorded. All patients underwent chest X-ray (CXR), HRCT, and LUS on admission. Pleural thickening, atelectasis, air bronchogram, B-line, and consolidation were noted in LUS and then compared with the corresponding findings in CXR and HRCT. Taking HRCT findings as reference, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy (DA) of LUS and CXR for the detection of each pulmonary abnormality were determined.ResultsOf the 30 patients included in this study, with a mean age of 19.62 ± 5.53 years, 14 (46.7%) were male. Of the 15 patients aged 2–20 years, BMI was below the 5th percentile in 10 (66.7%), within the 5–10 percentiles in 1 (6.7%), 10–25 percentiles in 3 (20%), and 25-50 percentiles in 1 (6.7%). The mean BMI for 15 patients > 20 years was 18.03 ± 2.53 kg/m2. LUS had better diagnostic performance compared to CXR for the detection of air bronchogram, consolidation, and pleural thickening (area under the receiver operating characteristic curve [AUROC]: 0.966 vs. 0.483, 0.900 vs. 0.575, and 0.656 vs. 0.531, respectively). Also, LUS was 100% and 96.7% specific for the diagnosis of pleural effusion and atelectasis, respectively.ConclusionsLUS appears to be superior to CXR and comparable with HRCT for the evaluation of CF pulmonary exacerbation, especially in terms of air bronchogram and consolidation detection. LUS can be used to lengthen the HRCT evaluation intervals in this regard or utilized along with HRCT for better evaluation of CF pulmonary exacerbation.

Highlights

  • Cystic fibrosis (CF) is a progressive genetic disease caused by a single-gene mutation, resulting in chemical change in the cystic fibrosis transmembrane conductance regulator (CFTR), a protein that forms a chloride channel with a critical role in mucus transportation [1]

  • lung ultrasound (LUS) appears to be superior to chest X-ray (CXR) and comparable with High-resolution computed tomography (HRCT) for the evaluation of CF pulmonary exacerbation, especially in terms of air bronchogram and consolidation detection

  • Pleural effusion was detected in none of the patients using HRCT, while it was detected in 1 patient using LUS and CXR

Read more

Summary

Introduction

Cystic fibrosis (CF) is a progressive genetic disease caused by a single-gene mutation, resulting in chemical change in the cystic fibrosis transmembrane conductance regulator (CFTR), a protein that forms a chloride channel with a critical role in mucus transportation [1]. CF lung disease can present with frequent lung infections, recurrent wheezing, tachypnea, and persistent coughing. The onset of CF lung disease is highly variable; respiratory manifestations do not commonly develop until later infancy [3]. CF lung disease occurs as a result of recurring cycles of inflammation and infection, culminating in chronic damage to the lung parenchyma which progresses to respiratory failure and even death [4,5,6]. There is no consensus regarding the definition of CF pulmonary exacerbation; exacerbations are usually well recognized by the acute worsening of signs and symptoms, as well as deterioration of CF lung disease and transient decline in forced expiratory volume in 1 s ­(FEV1) [7]. We aimed to determine the diagnostic performance of LUS for the evaluation of CF pulmonary exacerbation

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.