Abstract

Lung image segmentation plays an important role in computer-aid pulmonary disease diagnosis and treatment. This paper explores the lung CT image segmentation method by generative adversarial networks. We employ a variety of generative adversarial networks and used their capability of image translation to perform image segmentation. The generative adversarial network is employed to translate the original lung image into the segmented image. The generative adversarial networks-based segmentation method is tested on real lung image data set. Experimental results show that the proposed method outperforms the state-of-the-art method. The generative adversarial networks-based method is effective for lung image segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.