Abstract

Lung image segmentation plays an important role in computer-aid pulmonary diseases diagnosis and treatment. This paper proposed a lung image segmentation method by generative adversarial networks. We employed a variety of generative adversarial networks and use its capability of image translation to perform image segmentation. The generative adversarial networks was employed to translate the original lung image to the segmented image. The generative adversarial networks based segmentation method was test on real lung image data set. Experimental results shows that the proposed method is effective and outperform state-of-the art method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.