Abstract

Although high-affinity imipramine binding sites have been reported in both rat and human lung, the role of the lungs in the pharmacokinetics of antidepressants has not received much attention. Substantial accumulation of selective serotonin-reuptake inhibitors (SSRIs) in the lungs has been reported. We have investigated the role of the lungs in pharmacokinetic drug interactions between tricyclic antidepressants and SSRIs. We used a carbon-11-labelled form of the imipramine derivative cyanoimipramine to measure uptake in the lungs and brain of healthy volunteers by positron emission tomography. Clomipramine (50 mg) was administered to measure the effect of antidepressants with high affinity for the serotonin transporter on lung and brain uptake. A large proportion of the injected 11C-cyanoimipramine (68-86% in the four volunteers) was extracted by the lungs. Clomipramine decreased the lung uptake from 68% to 35% and from 81% to 54% in the two volunteers studied. By contrast, whole-brain uptake was low in control studies (1.7-2.0% in three volunteers) and increased after clomipramine administration (to 4.5-4.9%). Plasma radioactivity was also higher after clomipramine than in control studies. The lungs may function as a reservoir for antidepressants with high affinity to the serotonin transporter. The accumulated antidepressants may be displaced by other antidepressants, and this displacement would substantially increase plasma concentrations and thus cause toxic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.