Abstract
In this study, improved lumped parameter models were proposed for transient thermal analysis of multilayered composite pipeline with active heating, which is essential for flow assurance design and operating strategies of deepwater subsea pipelines. Improved lumped models for transient heat conduction in multilayered composite pipelines were based on two-points Hermite approximations for integrals. The transient energy equation for the bulk temperature of the produced fluid was transformed into a set of ordinary differential equations in time by using a finite difference method. The coupled system of ordinary differential equations for average temperatures in the solids and bulk temperature of the fluid at each longitudinal discretization point along the pipeline was solved by using an ODE solver. With the proposed method, we analyzed the transient heat transfer in stainless steel-polypropylene-stainless steel sandwich pipes (SP) with active electrical heating. Convergence behaviors of the average temperature of each layer and the bulk temperature of the produced fluid calculated by using the improved lumped models (H0,0/H1,1 and H1,1/H1,1 approximations) against the number of grid points along the pipelines were presented. Case studies were performed to investigate the effect of the linear rate of power input and the average velocity on the bulk temperature distribution of the produced fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.