Abstract
A (2+1)-dimensional fifth-order KdV-like equation is introduced through a generalized bilinear equation with the prime number p=5. The new equation possesses the same bilinear form as the standard (2+1)-dimensional fifth-order KdV equation. By Maple symbolic computation, classes of lump solutions are constructed from a search for quadratic function solutions to the corresponding generalized bilinear equation. We get a set of free parameters in the resulting lump solutions, of which we can get a nonzero determinant condition ensuring analyticity and rational localization of the solutions. Particular classes of lump solutions with special choices of the free parameters are generated and plotted as illustrative examples.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have