Abstract

Qualitative and quantitative analysis of mercury at concentration levels as low as parts per billion (ppb) is a basic and practical concern. The vast majority of research in this field has centered on the development of potent chemosensor to monitor mercuric (Hg2+) ions. Mercury exists in three oxidation states, + 2, + 1 and 0, all of which are highly poisonous. In this study, (N1E,N2E)-N1,N2-bis(pyrene-1-ylmethylene)benzene-1,2-diamine (PAPM), a novel photoluminescent sensor based on pyrene platform was synthesized. Over the tested metal ions (Cd2+, Co2+, Cu2+, Mg2+, Mn2+, Ni2+, K+, Na+, Zn2+, Sr2+, Pb2+, Al3+, Cr3+ and Fe3+) the sensor responds only to Hg2+ by showing high selectivity and sensitivity. After treatment with mercuric ions at room temperature, the luminescence intensity of probe was quenched at 456nm. The quenching of fluorescence intensity of probe upon addition of mercury is due to the effect of "turn-off" chelation enhanced quenching (CHEQ) by the formation of 1:1 complex. The ESI-MS spectrum and the Job's experimental results confirm the formation of 1:1 complex between PAPM and Hg2+. The detection limit and association constant of sensor for mercury is computed using fluorescence titration data and were found to be 9.0 × 10-8M and 1.29 × 105M-1 respectively. The practical application of sensor towards recognition of mercury(II) ions was explored through economically viable test strips and also using cell imaging studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call