Abstract

The detection of toxic, hazardous chemical species is an important task because they pose serious risks to either the environment or human health. Luminescent metal-organic frameworks (LMOFs) as alternative sensors offer rapid and sensitive detection of chemical species. Interactions between chemical species and LMOFs result in changes in the photoluminescence (PL) profile of the LMOFs which can be readily detected using a simple fluorometer. Herein, we report the use of a robust, Zn-based LMOF, [Zn5(μ3-OH)2(adtb)2(H2O)5·5 DMA] (Zn-adtb, LMOF-341), for the selective detection of benzaldehyde. Upon exposure to benzaldehyde, Zn-adtb experiences significant luminescent quenching, as characterized through PL experiments. Photoluminescent titration experiments reveal that LMOF-341 has a detection limit of 64 ppm and a Ksv value of 179 M-1 for benzaldehyde. Furthermore, we study the guest-host interactions that occur between LMOF-341 and benzaldehyde through in situ Fourier transform infrared and computational modeling employing density functional theory. The results show that benzaldehyde interacts more strongly with LMOF-341 compared to formaldehyde and propionaldehyde. Our combined studies also reveal that the mechanism of luminescence quenching originates from an electron-transfer process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.