Abstract

True three-dimensional (3D) displays are the best display technologies and their breakthrough is primarily due to advancements in display media. In this paper, we propose two luminescent materials for a static volumetric 3D display based on photoactivated phosphorescence. The luminescent materials include (1) dimethyl sulfoxide (DMSO)/1-methyl-2-pyrrolidinone (NMP) or tetramethylene sulfoxide (TMSO) as the solvent and photochemically-deoxygenating reagent; (2) a metal phthalocyanine complex as the sensitizer; (3) a phosphorescent platinum complex as the emitter. The metal phthalocyanine complex, PdPrPc (PdBuPc), absorbs the light beam of 635 nm and the solvent scavenges the sensitized singlet oxygen. Light beams pass through a deoxygenated zone. The phosphorescent emitter, PtNI, absorbs the 440 nm light beam and phosphoresces only in the deoxygenated zone generated by the sensitizer. Phosphorescent voxels and high-contrast 3D images are well-defined at the intersection of 635 and 440 nm light beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.