Abstract

Functional materials exhibiting magnetic and luminescent properties have been recognized as an emerging class of materials with great potential in advanced applications. Herein, properties of multifunctional ceramic composites consisting of two garnets, luminescent cerium-doped Y3Al5O12 (Ce:YAG) and magnetic Y3Fe5O12 (YIG), are reported. On increasing the sintering temperature, both the photoluminescence and saturation magnetization of the Ce:YAG-YIG composites decreased gradually because of the interdiffusion of trivalent ions such as Al3+ and Fe3+. At a constant sintering temperature of 1100 °C, the YIG contents in the composites increased, thereby causing their luminescent properties to degrade and the saturation magnetizations to increase. For application to electronics, Ce:YAG-YIG composite thin films were integrated on quartz substrates by sputtering the ceramic target. The composite thin films exhibited both magnetic and luminescent properties after annealing. These techniques facilitate the incorporation of multifunctional nanocomposites into various devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call