Abstract
Re-dispersible Tb(3+) doped LaPO(4) nanorods have been prepared using ethylene glycol (EG) as a capping agent as well as reaction medium at a relatively low temperature of 150 °C. The X-ray diffraction study reveals that all the doped samples are well crystalline with a monoclinic structure of the LaPO(4) phase. The luminescence intensity of (5)D(4)→(7)F(5) transition at 543 nm (green) is more prominent than that of (5)D(4)→(7)F(6) transition at 487 nm (blue) for all the samples. This is related to the polarizing effect from [PO(4)](3-) to the Tb(3+) site. Concentration dependent luminescence study shows that the luminescence intensity of Tb(3+) increases up to 10 at.% and decreases above this. This is due to the concentration quenching effect arising from cross relaxation among Tb(3+)-Tb(3+) ions. The results show that nanoparticles prepared in EG medium gives an enhanced luminescence compared to that prepared in water. This is attributed to the multiphonon relaxation effect from O-H groups surrounding over nanoparticles as well as the extent of increase of agglomeration among particles for samples prepared in water. Significant enhancement in the emission of Tb(3+) is also observed when Ce(3+) is used as the sensitizer in LaPO(4):Tb(3+)nanorods. The optimum concentration of Ce(3+) for maximum luminescence is found to be 7 at.% in Ce(3+) sensitized LaPO(4):Tb(3+) (5 at.%). Based on the energy transfer process from Ce(3+) to Tb(3+), the luminescence of Tb(3+) can be switched OFF and ON by performing oxidation and reduction of Ce(3+)↔Ce(4+) using KMnO(4) and ascorbic acid, respectively. The samples are re-dispersible in water, methanol and can be incorporated into polyvinyl alcohol (PVA) films. They show a dark green emission under ultraviolet radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.