Abstract

Using flexible structures and components of metal-organic framework (MOF) materials, we designed and developed an artificial nanozyme with dual functions of a catalyst and luminescent sensor specifically for the determination and degradation of hormone 17β-estradiol (E2) and its derivatives (E1, E3, and EE2), a class of disruptors with strong effect on the human endocrine system. This nanozyme composed of the luminescent Tb3+ ion, catalytic coenzyme factor hemin, and light-harvesting ligand can be used to both degrade E2 like natural horseradish peroxidase (HRP) and sense E2 as low as 50 pM by its luminescence. The nanozyme catalyzes the decomposition of E2 and its derivatives through a mechanism of active hydroxyl radicals and oxidative high-valent iron-oxo intermediates. The prepared nanozyme is pluripotent, stable, and cheap and can replace the widely used combination of natural enzyme and chromogenic substrate. The present strategy of constructing artificial enzymes directly from functional units provides a new way for the design and development of smart, multifunctional artificial enzymes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.