Abstract

Ce3+/Sm3+ co-doped calcium aluminosilicate (CA: Ca2Al2SiO7) phosphors were successfully synthesized using the well-known method based on solid-state reaction method at elevated temperature-1280 °C. Key parameters including the structural and luminescent properties of the prepared phosphors are examined in detail via the X-ray diffraction (XRD), a scanning electron microscope (SEM) image, luminescence decay, photoluminescence and photoluminescence excitation spectra. XRD patterns indicated that the obtained phosphors reach a single phase of Ca2Al2SiO7 with tetragonal structure. Fluorescence results of CA:Ce3+ and CA:Sm3+ phosphors show the emission band of Ce3+ overlaps well the strongest excitation peak of Sm3+ lead to the energy transfer (ET) process from Ce3+ to Sm3+ when they are co-doped in CA material. In the co-doped sample CA:Ce3+,Sm3+, the Ce3+ sensitizer enriches the intense red emission of Sm3+ activator regarding the transfer of its part excitation energy to Sm3+ ions. Through analysis of luminescence behaviors, the mechanism of the ET process from Ce3+ to Sm3+ ions in CA phosphors have been determined to be the dipole-dipole interaction by applying the Dexter model. The efficiency (ηET) of energy transfer from Ce3+ ions to Sm3+ ions increase with the increase of Sm3+ concentration. The CIE coordinates of all the prepared samples were also demonstrated under different excitation wavelengths to estimate the emission feature of the prepared phosphors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call