Abstract

Metal-organic frameworks (MOFs), a diverse and rapidly expanding class of crystalline materials, present many opportunities for various applications. Within this class, the amino-functionalized Zr-MOF, namely, UiO-66-NH2, stands out due to its distinctive chemical and physical properties. In this study, we report on the new unique property where UiO-66-NH2 nanocrystals exhibited enhanced fluorescence upon heating, which was persistently maintained postcooling. To unravel the mechanism, the changes in the fluorescence signal were monitored by steady-state fluorescence spectroscopy, lifetime measurements, and a fluorescence microscope, which revealed that upon heating, multiple mechanisms could be contributing to the observed enhancement; the MOFs can undergo disaggregation, resulting in a fluorescent enhancement of the colloidally stable MOF nanocrystals and/or surface-induced phenomena that result in further fluorescence enhancement. This observed temperature-dependent photophysical behavior has substantial applications. It not only provides pathways for innovations in thermally modulated photonic applications but also underscores the need for a better understanding of the interactions between MOF crystals and their environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call