Abstract
AbstractZinc selenide doped with Sn and (Sn, Dy) phosphors has been prepared by firing the samples in an atmosphere of nitrogen gas. The voltage and frequency dependence of electrolyte brightness has been studied. Voltage dependence of electroluminescence (EL) brightness reveals an acceleration collision mechanism in the Schottky barrier at the metal–semiconductor interfaces. EL and photoluminescence (PL) spectra and thermoluminescence (TL) glow curves of these phosphors have also been recorded to understand the nature and mechanism involved in the luminescence process. The trapping parameters are calculated for the glow curves of these phosphors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.