Abstract

In the field of experimental fluid dynamics, the direct measurement of vorticity remains a challenge, even though it plays a crucial role in understanding turbulent flows. The present study explores the influence of the rotation of nanoparticles on their luminescence anisotropy as a potential novel measurement method. This relation opens a new field of flow diagnostics, based on the measurement of polarized intensity components. Potentially, the method allows for the direct measurement of the vorticity. For this, the canonical flow in this study is a turbulent round jet at ${{Re}} = {12\,000}$ and 14 400. It is confirmed that the flow regime has an influence on the luminescence anisotropy. Using a model of such deterministic rotations according to another work by the authors (Schmidt & Rösgen, Phys. Rev. Res., vol. 5, no. 3, 2023, 033006), the magnitude of the vorticity components is computed, since the presented set-up is limited to sensing the magnitude of these quantities. The computed components indicate the self-similarity of the vorticity magnitude. A large-eddy simulation is conducted for comparison with the experiments, demonstrating good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call