Abstract

In a turbulent jet, the numerical investigation of space-time correlations C(r, τ) at two-point and two-time of streamwise fluctuating velocities is presented along the nozzle lipline. Large-eddy simulation (LES) is performed for a Mach 0.9 turbulent jet issuing from a round nozzle. The turbulent boundary layer is well developed at the nozzle outlet, upon the inner wall, by adopting synthetic turbulent inlet boundary conditions. We study the cross correlations of streamwise fluctuating velocities at three particular streamwise positions, i.e., x = 0.71, 7.03, and 34.47r0, corresponding to different stages of jet development, where r0 is the radius of the nozzle. Present results show that the classical Taylor’s frozen-flow model is unable to predict C(r, τ) accurately in this strongly spatially developing shear flow since the distortion of the flow pattern is missing. The isocorrelation contours of C(r, τ) show a clearly elliptical feature, which is found to be well predicted by the elliptic approximation (EA) model [G.-W. He and J.-B. Zhang, “Elliptic model for space-time correlations in turbulent shear flows,” Phys. Rev. E 73, 055303 (2006)]. According to the EA model, C(r, τ) has a scaling form of C(rE, 0) with two characteristic velocities U and V, i.e., rE = (r − Uτ)2 + V2τ2. By examining LES data, it is found that the characteristic velocity U determined in LES is in general consistent with the theoretical Ut in the EA model, while the trend of V in LES also matches with that of the theoretical Vt. Additionally, it is interesting that the ratio of V to Vt is approximately a constant V/Vt ≃ 1.3 in the turbulent jet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call